
Föld
Hold
A Hold bolygónk egyetlen nagyméretű, természetes kísérője. Átmérője közel negyede a Földének, így a Naprendszer hatodik legnagyobb holdja. Tömege 1,2%-a bolygónkénak. Átlagosan 27 földátmérőnyire kering bolygónk körül, 1 km/s-os sebességgel direkt irányban. 27,3 nap alatt tesz meg egy fordulatot, ezt nevezik sziderikus keringési időnek. Tengelyforgási periódusa ugyancsak 27,3 nap, aminek következtében mindig ugyanazt az oldalát fordítja bolygónk felé – ezt nevezik kötött tengelyforgásnak. A valóságban felületének valamivel több mint felét tudjuk megfigyelni. Ennek egyik oka, hogy a Hold pályasíkja 5 fokos szöget zár be az ekliptikával, a Föld pályasíkjával, így időnként északi, időnként pedig déli pólusára látunk rá jobban – ez a szélességi libráció. A Hold tengelyforgása egyenletes, de földközelben gyorsabban, földtávolban pedig lassabban halad pályáján. Így néha előresiet, máskor pedig kicsit lemarad, ezért néha keleti, néha nyugati oldalára látunk rá jobban – ez a hosszúsági libráció. A Hold librációs mozgásának következtében felszínének mintegy 59%-a figyelhető meg a Földről. Kötött tengelyforgása csak a Földre vonatkoztatva áll fenn, a nappalok és éjszakák természetesen a Holdon is váltakoznak. Egy holdi nap a 27,3 napos tengelyforgási időnél valamivel hosszabb, mivel a Hold a Földdel együtt a Nap körüli pályán halad – azaz a Nap elmozdulni látszik a háttércsillagokhoz képest. Így ahhoz, hogy a Nap ismét deleljen a Hold egy adott helyéről nézve, még 2,2 napnak kell eltelnie – ez a Hold szinodikus keringési ideje. A Holdnak nincs saját fénye, a bolygókhoz hasonlóan a róla visszaverődő napfény teszi láthatóvá. A felszínét borító anyag fényvisszaverő képessége meglehetősen rossz, a ráeső fénynek átlagosan 7%-át veri vissza, hasonlóan pl. a hamuhoz. Ennek ellenére, mivel elég közel van hozzánk, a második legfényesebb objektum a Nap után. Újhold környékén – első negyed előtt és utolsó negyed után – az ún. hamuszürke fényt figyelhetjük meg rajta. Ez az árnyékos oldal enyhe derengése, amit a Földről a Holdra, onnan pedig ismét a bolygónkra visszavert napfény hoz létre.
Belső szerkezet: A Hold több szempontból is aszimmetrikus égitest, belseje differenciálódott. Tömegközéppontja 3 km-rel közelebb van a Földhöz, mint geometriai középpontja, a kéreg vastagsága a Föld felőli oldalon 60 km körüli, a túloldalon kb. kétszer ekkora. Magja valószínűleg olvadt állapotban van, sugara 700 km körüli lehet.
Légkör: A Hold légköre rendkívül ritka, felszíni sűrűsége 10-20 g/cm3 , a földi exoszférával mérhető össze. Eddig hélium és argon, valamint kálium és nátrium jelenlétét sikerült kimutatni benne. Ezeket az anyagokat részben a bolygóközi térből fogja be, részben pedig a mikrometeorit-bombázás hatására szabadulnak fel felszínéről. A légkör alakja leginkább egy üstököscsóvára hasonlít: a Nap felőli oldalon kétszeres, az ellentétes oldalon pedig nagyjából tízszeres holdátmérőig terjed ki. Jelentős atmoszféra hiányában nagy a napi hőingás: a nappali oldalon +130 oC-ig emelkedik a hőmérséklet, majd éjszaka -160 o C-ig süllyed. Mivel a talaj rossz hővezető, a hőingás csak a legfelső fél méteres rétegre van hatással, ám itt erős aprító tevékenységet fejt ki.

Felszín: A Hold szilárd felszínnel rendelkezik, melyet kráterek sűrűn borítanak. Felszíne már szabad szemmel is két különböző területre bomlik: a világosabb felföldekre (terra) és a sötétebb tengerekre (mare). A Föld felőli oldalon a tengerek aránya 30%, míg a túloldalon csak 3%, az egész felszínen 16,5%. A felföldek fényvisszaverő képessége a jobb, ezek képviselik a Hold ősi kérgét. Alacsony vastartalmú anortozitos összetételűek, magas földpát tartalmúak, alumíniumban és kalciumban gazdagok. Eredetileg kristályos formában létezhettek, de a becsapódások során sokszor darabolódtak és újra összeolvadtak, így breccsa alakban találhatók. (Az anortozit földünkön nem túl gyakori ásvány. A Holdon valószínűleg azért található nagy mennyiségben, mivel égi kísérőnkön a környezet redukáló jellegű, hiányzik az ásványokat átalakító víz.) A kéreg vastagsága néhányszor 10 km lehet, kora 4,5 milliárd év körüli. A tengerek a felföldeknél sötétebb területek, nagyméretű becsapódásos medencék talapzatát töltik ki. Nagy vastartalmú, kristályos szerkezetű bazaltok, a felföldeknél nagyobb sűrűségű14 anyagok. A legnagyobb becsapódások átszakították a kérget, és az így keletkezett sebhelyeken ömlött a felszínre a láva, amely szétfolyt, kitöltötte a mélyedéseket. A tengerek területén gravitációs anomáliákat lehet kimutatni, amelyet a bennük elhelyezkedő nagytömegű és sűrűségű bazalt hoz létre. Ezeket masconoknak (mass concentration) nevezik. Létük arra utal, hogy a medencék feltöltődése akkor történt, amikor a holdkéreg már olyan szilárd volt, hogy nem jöhetett létre izosztatikus kiegyenlítődés. A tengerek nem egyszerre keletkeztek, koruk 3,2-3,7 milliárd év közötti. A felszín legfelső rétege a becsapódások, a napszél, a kozmikus sugárzás és a hőingás hatására laza, kötőanyag nélküli törmelékké alakult – ez a regolit. Vastagsága méteres, tízméteres nagyságrendű, a felföldeken vastagabb. Legfelső néhány centiméteres rétege por finomságú, szemcséi átlagosan 0,1-0,01 mm-esek. Ennek 25-30%-át üvegszerű gömbök alkotják, amelyek a meteoritbecsapódások alkalmával megolvadt és szétfröccsent anyag apró megfagyott cseppjei.
Medencék: Nagyméretű becsapódásos képződmények, feneküket sötét bazalt borítja. A becsapódás alkalmával felszabadult energia gyakran több koncentrikus gyűrűt alakított ki bennük. Ezek területén illetve környezetükben található a becsapódáskor kirobbant anyagtörmelék takarója, valamint az ekkor kirepült nagyobb testek által ütött másodlagos kráterek.
Kráterek: Becsapódásos képződmények, nagyságuk a cm-es mérettől egészen a 200 km-es átmérőig terjed. (Az ezeket kiváltó becsapódások kisebbek voltak a medencéket létrehozóknál.)
Thalasszoidok: Medence nagyságú mélyedések a felföldek területén, óriáskráterek. Méretük mare medencék nagyságrendjébe esik, fenekük azonban világos színű kéreganyagból áll, főleg a Hold túloldalán fordulnak elő. Létrejöttük oka, hogy a túloldalon vastagabb a kéreg, így a nagyobb becsapódások közül csak kevés tudta azt átszakítani, és a magmát a felszínre juttatni.
Sugársávok: A nagyobb, fiatal kráterekből sugárirányban szétágazó, többszáz km hosszú keskeny sávok, amelyek minden útjukba eső formáción áthaladnak. Általában világos árnyalatúak, csak magas napállásnál figyelhetők meg. Létük egyelőre nem tisztázott, vagy a becsapódások által kidobott anyagszemcsék alkotta vékony törmeléktakarók, vagy ugyancsak a becsapódások által kidobott anyag formálta apró kráterek milliói.
Vulkanikus képződmények: Legnagyobbak a becsapódásos medencék bazaltlávával feltöltött területei. Ezeken a helyeken nem alakultak ki vulkanikus hegyek, a köpenyből feltörő lávák laposan szétfolytak a mélyedésekben. Csak kis szintkülönbségek találhatók rajtuk: lépcsők, lávafolyások frontvonalai. A medencéket feltöltő vulkanikus tevékenység kb. 3 milliárd évvel ezelőtt ért véget. A felszínen lávafolyások nyomai is láthatók: völgyek, csatornák, amelyek egykori láva alagutak beomlott maradványai lehetnek. Akadnak szerkezeti mozgásokra utaló rianások is, ezek valószínűleg holdrengések alkalmával keletkeztek. (A Hold egyébként gyenge szeizmikus aktivitást mutat, a rengések ritkán érik el a Richter-skála szerinti 3-as értéket. A rengésfészkek átlagos mélysége 800-1200 km közötti.) Az egykori vulkanikus tevékenység nyomait őrzik a dómok. Ezek kilométeres, illetve kisebb, lapos, kúp alakú kiemelkedések, tetőaknával a csúcsukon. A Hold napjainkra már vulkanikusan halott égitest. Egyes vidékein időnként felfényléseket lehet megfigyelni, amelyek valószínűleg gázfeltörések. Ezeket TLP (Transient Lunar Phenomena) rövidítéssel jelzik, felszínformáló hatásuk elhanyagolható. A Hold egykori vulkanikus tevékenységéről még napjainkban is heves viták folynak, általánosan elfogadott álláspont nincsen.
A Hold keletkezését szintén nem ismerjük pontosan. Összetétele arra utal, hogy a Naprendszer belső területén alakult ki, de különbözik bolygónk összetételétől. Lehetséges, hogy a Földtől külön jött létre, és csak később állt bolygónk körüli pályára. Ugyancsak elképzelhető, hogy a Földdel együtt, annak környezetében keletkezett – azonban valamilyen inhomogén összeállás során, amely eltérést hozott létre a két égitest anyagösszetételében. Összeállása után a kezdeti és a radioaktív bomlás során felszabadult hőtől belseje megolvadt és differenciálódott. Ekkor alakult ki a mag, a köpeny és az anortozitos kéreg, amelyet a későbbiekben a nagy meteoritbecsapódások néhol átszakítottak.
Mars
Phobos, Deimos

A Mars körül két hold kering: a Phobos és a Deimos. Mindkettő kicsi, szabálytalan égitest, amelyek a bolygó egyenlítői síkjában, direkt irányban kötötten keringenek. A Phobos egy krumpli alakú, 21x22x19 km-es szikladarab. Rendkívül sötét, sűrűsége a szenes kondrit meteoritokéhoz áll közel. Felszínét kráterek borítják, kora 3,4 milliárd év.
Krátereinek és repedéseinek eloszlásában szabályszerűséget lehet felfedezni, melyek egy része egy hatalmas becsapódás alkalmával keletkezhettek. Az ekkor kidobott anyag a keringések során végigbombázta a felszínt látványos kráterláncokat hozott létre. (Mindezek mellett olyan barázdák is láthatók a Phoboson, amelyek réteges belső felépítésre utalnak.)

A Deimos kisebb, 15x12x11 km-es, szintén sötét, a Phoboshoz hasonló összetételű lehet. Felszínét vastagabb porréteg borítja, mint a Phobosét, így korának megállapítása elég nehéz. Lehetséges, hogy a két kis égitestet a Mars az aszteroidaövből fogta be és tette holdjaivá – erre azonban egyelőre nincs bizonyíték.
Jupiter
Io

Az Io a legbelső a négy Galilei-hold közül, külső társaihoz képest nagy a sűrűsége, ami arra utal, hogy azoknál sokkal kevesebb vízjeget tartalmaz. Felszíne élénk narancssárga és vöröses színű, amit kén- és foszforvegyületek okoznak. Legfontosabb jellemzője a rendkívül erős vulkanikus aktivitás. Az Io felszínén becsapódásos krátereket egyáltalán nem találni, az aktív vulkanizmus ugyanis folyamatosan eltörli azokat.
A felszín legnagyobb részét vulkanikus anyagtörmelékek, lerakódások borítják. Az eddig felfedezett vulkáni kürtők és kitörési központok száma 300 körüli, a kalderák beomlásos eredetűek, átlagos méretük 40 km. Általában kör alakúak, teraszok találhatók bennük, peremük csipkézett, és hosszú, radiális lávafolyásokkal tarkított. A vulkánok közül eddig nyolc egyidejű működését lehetett megfigyelni. Mivel az égitest gravitációs tere gyenge és a kilövellési sebesség 1 km/s körüli, a vulkanikus felhők 200-300 km magasra emelkednek, anyaguk egy része pedig el is hagyja a holdat. A heves vulkanikus aktivitás oka a hold különlegesen nagy hőtermelése, ami a következő forrásból származik. Az Io az Európával 2:1 arányú pályarezonanciában van, azaz míg az Io kétszer kerüli meg a Jupiter, az Európa pontosan egyszer teszi azt. A jelenség következtében az Európa igyekszik az Io pályáját elnyújtani, elliptikussá tenni. Az ellipszissé torzult pályán jupiterközelben gyorsabban, jupitertávolban lassabban halad az égitest – tengelyforgása kötött, keringési sebessége viszont változó. Ennek következtében a Jupiter által az Ión keltett dagályhullám helyzete periodikusan eltolódik. Az Io alakja így bizonyos értelemben torzulásokat szenved, a köpeny anyaga a kéreghez súrlódik, a folyamat hőt termel. (Amennyiben az Io szilárd köpeny nélküli égitest lenne, az árapályerők hatására keletkező hullámok amplitúdója elérné a 100 méteres nagyságot.) A vulkanikus aktivitás forrása tehát az árapályfűtés, hajtómotorja pedig nem a víz és a széndioxid, mint a Földön, hanem valószínűleg a kéndioxid. A szilárd szilikátokból és kénvegyületekből felépülő kéreg alatt folyékony kén és kéndioxid tavak létezhetnek. Ezek az árapályfűtésből származó hő miatt felmelegszenek, és a felszínre próbálnak törni. A szabadba jutott kéndioxid robbanásszerűen elpárolog, és repülése végén fagyott formában visszahullik a hold felszínére. A kéreg felső részében főleg kénvegyületek dominálnak folyékony és szilárd állapotban, alattuk szilárd kőzet található. Ez alatt helyezkedik el a folyékony szilikát köpeny, legbelül pedig a kőzetmag. Az Io légköre rendkívül ritka, inhomogén eloszlású, az aktív kitörési központok környékén sűrűbb. A vulkánkitörések által, valamint a Jupiter magnetoszférájában található töltött részecskék bombázásának hatására sok anyag szabadul ki a hold felszínéről. Ezek egy hatalmas gyűrűt formálnak az óriásbolygó körül. Az Io ebben a főleg hidrogénből, kénből és nátriumból álló tóruszban kering. A hold napsütötte oldala felett ionoszféra alakul ki, amit a Jupiterrel egy hatalmas áramlási cső köt össze, ebben néhány millió amperes áramok folynak.
Európa
Az Európa kifelé haladva a második nagy hold az Io után. Felszíne sima, óriási biliárdgolyóra hasonlít, a szintkülönbségek ritkán érik el a 100 métert. Anyagának kb. 20%-át vízjég alkotja, a többit kőzet. Krátereket alig látni rajta, felszínének legfeltűnőbb képződményei az egész égitestet átszelő repedések, rianások hálózata. A hold felszínét régen hatalmas óceán boríthatta, vékony jégréteggel a tetején. A későbbiekben, ahogy hűlt az égitest, ez a réteg elkezdett vastagodni, és az árapályerők, valamint a víz fagyásakor fellépő térfogatnövekedés hatására repedések keletkeztek rajta. Ezeket a belsőből kiáramló jég kitöltötte, és a földi befagyott tavakon kialakuló rianásokra hasonlító képződmények jöttek létre. Jelenleg az árapályerők hatására keletkező hő a felszín alatt 10 km-rel egy folyékony vízóceánt tart fenn, amelynek mélysége 75-100 km lehet, ez alatt húzódik az Európa kőzet belseje. A kráterek hiányát a relatíve képlékeny, és hő hatására megolvadó jégkéreg magyarázza
Ganymedes
A Ganymedes a Naprendszer legnagyobb holdja, mérete a Merkúrét is meghaladja. Anyagának mintegy fele kőzet, fele vízjég, melynek egy része a belsőben folyékony formában van. Felszíne jelentős geológiai aktivitásról tanúskodik, két területtípust lehet megkülönböztetni rajta. A sötétebb, erősen kráterezett vidékek az idősebbek, gyakran szokták ezeket „kontinenseknek” nevezni. A világosabb részek a kontinensek közötti területeket töltik ki, melyeken gyakran a kontinentális vidékekkel párhuzamos barázdák figyelhetők meg, ezek kora 3-3,5 milliárd év. Itt is a hold lassú hűlésével együtt a jég megfagyásakor tágulás lépett fel. Ez felrepesztette az eredeti kérget, és az egyes „kontinensek” (ősi kéregtáblák) lassan távolodni kezdtek egymástól. A közöttük keletkezett területet a belsőből feltörő jég kitöltötte, így jöttek létre a barázdált világosabb területek. A felszíni kiemelkedések, akárcsak az Európánál, nem haladják meg az 1 km-t, mivel az ennél nagyobb tömegek alatt a jég lassan szétfolyik.
Callisto
A Callisto a legkisebb sűrűségű a négy Galilei-hold közül. Kőzet és vízjég keverékéből áll, kérgének egy részében a víz itt is folyékony állapotban lehet jelen. Felszíne idős, sok kráter látható rajta. Legnagyobb becsapódásos képződményeit koncentrikus gyűrűk veszik körül, ezeket a becsapódás alkalmával megolvadt, majd gyorsan a jégbe fagyott hatalmas hullámok alkotják. A legnagyobb ilyen formáció átmérője mintegy 3000 km, amelyet 10-15 koncentrikus gyűrű vesz körül.
Szaturnusz
Titán

A Szaturnusz legnagyobb kísérője a Titán, a Naprendszer második legnagyobb holdja, melynek mérete a Merkúr bolygóét is meghaladja. A holdat nagytömegű, sűrű, élénk narancssárga légkör borítja. Fő összetevője a nitrogén, emellett metán, argon és különféle szénhidrogének is jelentős mennyiségben előfordulnak benne. Felhői kb. 200 km-ig emelkednek felszíne fölé, különleges színüket szénhidrogén-vegyületek hozzák létre. A légkör tömege kb. tízszerese a földiének, felszíni légnyomása 1,5 atmoszféra körüli, a sűrű gázburok teljesen átlátszatlan. A Titán felszínén a hőmérséklet -180 oC lehet. A hold atmoszférája a Földéhez hasonlóan nem az eredeti, első légkörében ugyanis még ammónia és metán dominálhatott. Ekkor a jelentős mennyiségű ammónia következtében az üvegházhatás sokkal erősebb volt, és -120 o C-ig emelte a felszíni hőmérsékletet. Az ammónia az ultraibolya sugárzás hatására elbomlott, a hidrogén – könnyű elem lévén – megszökött, a légkör pedig kezdett nitrogénben feldúsulni. Az atmoszférában a metán ma is fotodisszociál a Nap ultraibolya sugarai hatására, és hosszúláncú szénhidrogén vegyületeket épít fel. A bomlás során keletkező hidrogén könnyen eltávozik a holdról, és hatalmas gyűrűként, tóruszként veszi körül a Szaturnuszt. (Nem összekeverendő a gyűrűrendszerrel.) A légkörben jelenlévő metán valószínűleg a felszínről kap állandó utánpótlást, ahol szilárd illetve folyékony állapotban lehet jelen. A radarmérések arra utalnak, hogy a Titánt nem egy folyékony metán óceán borítja, hanem az tavak, tengerek formájában található. Ezek a tengerek más szénhidrogénekben is gazdagok lehetnek. A szilárd területek alapzata vízjég, ammónia és metán keveréke lehet. A felszínen vastag, szerves anyagokból, aminosavakból álló réteg halmozódott fel a metán fotodisszociációja során keletkező állandó szervesanyag-eső hatására.
Uránusz

Miranda, Ariel, Umbriel, Titania, Oberon
Az Uránusz körül eddig 15 holdat fedeztek fel, ezek két csoportba oszthatók: a bolygóhoz közel keringő kis holdakra, és a távolabb található öt nagyobb objektumra. A belső tíz, többnyire szabálytalan alakú hold átmérője 170 km-nél kisebb. Sötét színük arra utal, hogy külső társaikhoz képest kevesebb jeget tartalmaznak. Az öt távolabbi hold lényegesen nagyobb, ezek sorrendben: Miranda, Ariel, Umbriel, Titania és Oberon. A legbelső kivételével 1100-1600 km közötti átmérőjűek, alakjuk gömbszimmetrikus. Anyaguknak nagyjából a fele jég, fele kőzet, légkört egyiküknél sem sikerült kimutatni. Felszínükön sok becsapódásos kráter található, az idősebb területek kora 4 milliárd év körüli. Ezek mellett hatalmas, az égitestek geológiai aktivitását bizonyító fiatalabb képződmények is felfedezhetők. Ezek a törésrendszerek és gerincek – mint már korábban említettük – akkor keletkezhettek, amikor a holdak belseje szilárddá fagyott, és a fagyáskor a jég kitágult. Ez felrepesztette a kérget, és a belsőből az anyag a felszínre jutott, ahol változatos formációkat hozott létre.
Miranda

Az Uránusz rendszerében a 480 km átmérőjű Miranda az egyik legérdekesebb hold. Két, egymástól gyökeresen eltérő területtípus látható felszínén. Az egyik típusba erősen kráterezett, enyhén hullámos vidékek tartoznak – ezek az idősebbek. A másik csoportot egy központi területből és az azt körülvevő rendkívül sűrű, változó fényvisszaverő képességű gerinc- és völgyrendszerből álló régiók alkotják – ezek a fiatalabbak. Ezenkívül hatalmas törések tagolják az egész égitestet, melyek egy része a sávos területek előtt, egy része pedig azok kialakulása után keletkezett. A felszíni képződmények kialakulására két elgondolás született. Az egyik szerint a Miranda, bizonyos értelemben „kifordult önmagából”. A hold belsejét a kezdeti hő és a radioaktív bomlás által felszabadult hőmennyiség annyira felmelegítette, hogy ott megindult a differenciálódás. Röviddel ezután katasztrofálisan ütközött egy nagyméretű aszteroidával, amely több darabra törte szét az égitestet. A töredékek azonban nem távolodtak el messzire egymástól, és ismét felépítették a Mirandát. Egyes darabok az eredeti elhelyezkedésüknek megfelelően tértek vissza, mások viszont fordítva: sötétebb köpeny részükkel kifelé. A különböző darabok összeforrásával létrejöttek a felszínen ma megfigyelhető bizarr formációk. (Ehhez hasonló katasztrofális széttörés egyébként a többi holdnál is előfordulhatott életük legelején. A Miranda többször is szétdarabolódhatott, és felszíne a legutóbbi ilyen esemény nyomait őrizheti.) A másik elgondolás szerint a képződmények belső erők hatására alakultak ki. A radioaktív bomlás, valamint az árapályerők által fűtött égitestben a viszkózus jeges anyagok konvektív mozgásba kezdtek, és a felszínre érve alakították ki a formációkat.
Akárcsak a Szaturnusz holdak esetében, itt is két bombázási korszakra utal a kráterek eloszlása. Az első, a nagy bombázási időszakkal esik egybe, amikor Naprendszerünk kezdeti évmillióiban, nagyméretű testek csapódtak a holdak felszínébe. A következőben kisebb részecskék vettek részt, ezek az Uránusz-holdak esetleges vulkanikus tevékenysége alkalmával kidobott anyagból és a holdak széttörése valamint összeállása után maradt törmelékekből álltak.
Neptunusz
Triton

A Triton a Neptunusz legnagyobb kísérője és a Naprendszer hetedik legnagyobb holdja. Átmérője 2720 km, hat nap alatt kerüli meg a Neptunuszt, a többi holddal ellentétes, retrográd irányban. Pályahajlása 160 fokos, valószínűleg ez is befogott égitest. Szilikátok, vízjég- és széntartalmú anyagok építik fel, belső szerkezete differenciálódott. A felszín főleg fagyott nitrogénből és metánból áll, ezenkívül szénmonoxidot, széndioxidot és még számos szénhidrogén-vegyületet tartalmaz. Az egyenlítői övezetekről a napfény hatására a metán- és a nitrogénjég elpárolog, a pólusokon pedig kicsapódik, nagyméretű pólussapkát létrehozva. Légköre nagyon ritka, főleg nitrogénből, valamint metánból és egyéb szénhidrogénekből áll, amelyek által halvány rózsaszínes árnyalatú. Felszínén nagyméretű fagyott lávatavakat találni, vulkanizmusa azonban eltér a földitől. Az itt található lávák olyan anyagokból állnak, amelyek a víz fagyáspontja alatt is folyékonyak maradnak, így kevés belső hő is elegendő a vulkanikus tevékenység kiváltására. (Ez a többi óriásbolygó holdjaira is általánosítható.) Felszínén hosszú repedéseket és sokszögletű töredezett régiókat is találni, amelyek valószínűleg a láva felszín alatti mozgásának hatására alakultak ki. Feltűnő képződmények továbbá a pólussapkákon megfigyelhető sötét sávok, melyek gejzírek porlerakódásai lehetnek – ezek napjainkban is működnek a holdon. Energiájukat a belsőből és/vagy a gyenge napfényből szerzik. A felszíni áttetsző jégréteg átengedi a napsugarakat, amelyek mélyebben elnyelődnek, és melegíteni kezdik az ott található anyagot. A gáznyomás fokozatosan nő, míg végül áttöri a felszínt. A gejzír kitörése port is magával ragad, ami a lassú tritoni légkörzés hatására a szélárnyékos irányban lerakódik, és létrehozza a sötét sávokat.